วันพุธที่ 2 กันยายน พ.ศ. 2558

  การยกกำลัง คือการดำเนินการทางคณิตศาสตร์อย่างหนึ่ง เขียนอยู่ในรูป an ซึ่งประกอบด้วยสองจำนวนคือ ฐาน a และ เลขชี้กำลัง (หรือ กำลัง) n การยกกำลังมีความหมายเหมือนการคูณซ้ำ ๆ กัน คือ a คูณกันเป็นจำนวน n ตัว เมื่อ n เป็นจำนวนเต็มบวก อ่านต่อ







ความสัมพันธ์และฟังก์ชัน      
5.1 ความสัมพันธ์และฟังก์ชัน
1)คู่อันดับ : เขียนคู่อันดับในรูป (a,b) โดยที่  a เป็นสมาชิกตัวหน้า และ  b เป็นสมาชิกตัวคู่หลัง คู่อันดับสองคู่อันดับใดๆ จะเท่ากัน ก็ต่อเมื่อสมาชิกตัวหน้าและสมาชิกตัวหลังของทั้งสองคู่อันดับนี้เท่านั้น อ่านต่อ

         



จำนวนจริง
4.1จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I

เซตของจำนวนเต็ม เขียนแทนด้วย I อ่านต่อ



การให้เหตุผลแบบนิรนัย (Deductive Reasoning)


   การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐาน
ซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม
 ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริง
เพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผล
ที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของ
ข้ออ้างที่กำหนด
ตัวอย่างที่ 1      เหตุ   1.สัตว์เลี้ยงทุกตัวเป็นสัตว์ไม่ดุร้าย
                    2. แมวทุกตัวเป็นสัตว์เลี้ยง
ผล     แมวทุกตัวเป็นสัตว์ไม่ดุร้าย อ่านต่อ



วันพุธที่ 15 กรกฎาคม พ.ศ. 2558

เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
        สิ่งที่ในเชตเรียกว่า  สมาชิก  ( element หรือ members )
การเขียนเซต
การเขียนเซตอาจเขียนได้ 2  แบบ
   1 การเขียนซตแบบแจกแจงสมาชิก  เขียนสมาชิกทุกตัวลงในเครื่องหมายวงเล็บปีก กา { }  และใช้เครื่องหมายจุลภาค ( , ) คั่นระหว่างสมาชิกแต่ละตัว  เช่น
        เซตของจำนวนนับที่น้อยกว่า  7  เขียนแทนด้วย  {1,2,3,4,5,6,}
        เซตของพยัญชนะไทย  5  ตัวแรก  เขียนแทนด้วย  { ,,,, }
2.เขียนแบบบอกเงื่อนไข  ใช้ตัวแปรเขียนแทนสมาชิกของเซต  แล้วบรรยายสมบัติของสมาชิกที่อยู่รูปของตัวแปร  เช่น
        {x| x เป็นสระในภาษาอังกฤษ } อ่านว่า เซตของ x โดยที่ x เป็นสระในภาษาอังกฤษ
        {x| x  เป็นเดือนแรกและเดือนสุดท้ายของปี } อ่านว่า เซตของ xโดยที่ x เป็นเดือนแรกและเดือนสุดท้ายของปี  เครื่องหมาย “ | ”  แทนคำว่า  โดยที่
         ในการเขียนเซตแบบแจกแจงสมาชิกนั้นจะใช้จุด ( ... )  เพื่อแสดงว่ามีสมาชิกอื่นๆ ซึ่งเป็นที่เข้าใจกันทั่วไปว่ามีอะไรบ้างที่อยู่ในเซต  เช่น
        { 1,2,3,...,10 }  สัญลักษณ์ ... แสดงว่ามี 4,5,6,7,8 และ9 เป็นสมาชิกของเซต
        { วันจันทร์, อังคาร, พุธ,..., อาทิตย์ } สัญลักษณ์ ... แสดงว่ามีวันพฤหัสบดี  วันศุกร์  และวันเสาร์  เป็นสมาชิกของเซต อ่านเพิ่ม